Int. J. Solids Structures, 1971, Vol. 7, pp. 1075 to 1087. Pergamon Press. Printed in Great Britain

A METHOD OF ANALYSIS OF PLATES REINFORCED
WITH DISCRETE STIFFENERS

J. MaAHIGt

Department of Mechanical Engineering, University of Florida

Abstract—This paper attempts to demonstrate a new method for analyzing problems involving nonhomogeneous
discretely reinforced plates. The paper shows that a uniform plate can be accurately synthesized by a structure
made up entirely of simple beams and twisting elements. Using a second order approximation for the equations
governing the bending elements it becomes possible to specify the distribution of some of the internal stresses.
This additional flexibility makes it possible to independently specify bending and torsional stiffness as well as
the distribution of the interaction moment. The model is shown to converge in the limit to the governing dif-
ferential equation of a uniform plate. The equations for a discretely reinforced uniform plate are derived. The
equations derived are applied to a uniformly loaded simply supported plate. The accuracy of the results for a
4 x 4 grid is superior to that obtained with finite difference procedure for the given internal stress distribution
assumed.

NOTATION
El flexural rigidity (beam)
D flexural rigidity plate
h grid spacing
v Poisson’s ratio
zZ1 see Appendix
z2 see Appendix
zZ3 see Appendix
b half width of beam reinforcement
q load per unit area
a plate width
Subscripts
mn location of applied vector, first subscript designates direction of application
mn indicates differentiation with respect to m then n
INTRODUCTION

THE magnitude of the effort in the area of structural analysis of plates and shells has led
to the development of a great many methods and techniques for their solution [1]. Accurate
analyses in the simpler cases are dependent on a knowledge of the governing differential
equations for the plate or shell. The analyst may then, through the use of various “‘smearing”
techniques, extrapolate the use of these equations so that the results represent the states
of complex plates or shells even when discretely reinforced.

The finite element method which at present represents the most powerful method for
representing structures has undergone a fast and significant development within the last
10 yr. It first appeared in 1941 when Hrennikoff [2] approximated a flat rectangular plate

t Associate Professor.
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by an assemblage of trusses composed of six pin jointed bar elements. With the advent
of computers this method has been greatly extended by Hrennikoff [3], Clough [4], Yettram
and Husain [5, 6], McCormick [7], Turner et al. [8], Lunder [9], Zienkiewicz [10], Argyris
[11,12].

Application of the finite element method is based upon prescribing variations of the
field variables within a sufficiently small discrete region of the continuum under cou-
sideration. The functions of these prescribed field variables are assumed to be defined
in terms of an arbitrary set of values of the field functions at a selected number of grid
points. Then a variational principle is applied and the field function at those preselected
grid points are subjected to arbitrary variations or virtual changes. These variational
principles which are expressed in terms of volume integrals are then extended to include
the entire discretized continuum. The displacements and their derivatives or the stresses
or a combination of stresses, displacements and displacement derivatives may be con-
sidered as the arbitrary unknown field functions depending on the variational formulation
(stiffness or flexibility method).

A unique minimizing solution is assumed to exist if the functionals are everywhere
finite. Thus arbitrary field functions making up the functionals and their derivatives
must be continuous across the boundaries of the element up to and including an order one
less than that appearing in the functional. Therefore for finite values of the functional,
one must have continuity of the transverse and in plane displacements as well as the first
derivative of the transverse displacements across the boundaries of the discrete element.
It is also necessary that the approximations be such as to include the possibility of a
constant value of the functional throughout the element.

The equivalence between Galerkin’s method and the finite element method has been
established by Reddi [13]. In virtue of this equivalence, application of the finite element
method need no longer require the variational principle, but may be applied directly.

Although the selection of different panel or discrete continuum element shapes and
displacement modes lead to different capabilities, it is still useful to consider an example.
A rectangular element with four discrete corner points, when the transverse deflection
alone is considered, may have an acceptable set of displacement functions generated
with only twelve degrees of freedom. The resultant set as commonly used will not satisfy
inter-element slope continuity requirements. Nonetheless, this set will prove to be satis-
factory under the relaxed necessary and sufficient convergence conditions as noted by
Bozely et al. [14). Examples of the use of displacement functions with only 12° of freedom
are given by Zienkiewicz [10], Zudans [15], Melosh [16]. Improvements by Argyris [17]
and Dawe [18] are accomplished by adding to the number of degrees of freedom thus
allowing partial control of the magnitude of the slope discontinuity for general improve-
ment in final results.

The finite element method as outlined above, does not provide for the satisfaction
of internal equilibrium within the element (displacement method) only the overall equili-
brium of the element is satisfied. Also, the concept of replacing distributed tractions by
equivalent static loads may raise some questions as to the precise physical conditions
to which the structure is being subjected.

The method developed below differs significantly from those methods discussed
above yet in a broad sense may be considered a finite element method, distantly related
to the Hrennikoff idea. The method as developed hypothesizes a set of elementary twisting
and bending elements and their mode of interaction. The assemblage or panel is constructed
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and permitted to become small in order to demonstrate that in the limit the biharmonic
plate equation can be obtained. A ‘“‘second order” model is constructed using the elements
of the original panel from which the final difference equations are obtained.

The panel developed has twelve degrees of freedom as did the finite element representa-
tion discussed above; however, in this panel deflection, slope and moment continuity
are maintained between panels at the four corners of the element. The advantage over
“shearing” methods in finite differences is demonstrated. The panel developed satisfies
internal as well as external equilibrium requirements. Loads may be varied arbitrarily
in the coordinate directions, even to the “exact” representation of a concentrated load
anywhere on the plate. Internal stress distributions may also be controlled for greater
accuracy in extreme cases.

This panel can be developed so as to ““‘model” or simulate stiffness criteria obtained
from additional stiffeners or experimental findings. Zudans treats this case for the finite
element method [15]. This flexibility is possible because the torsional and bending stiffness
are found to be decoupled in this development. The additional flexibility obtained is at
the expense of a greater initial difficulty in the development of the appropriate finite
difference equations for the new panel.

METHODOLOGY

Homogeneous plate

Let us determine the strength and stiffness of a plate which contains uniformly spaced
discrete stiffeners. The stiffeners and plate are assumed to be of uniform thickness and
dimension and to be made up of an homogeneous material. We consider as an element
of the plate the exploded view shown in Fig. 1. The dashed lines in the figure make up
the gridwork and also serve as a coordinate system.

It is hypothesized that the four rectangular elements, 4, B,C, D are pure twisting
elements and represent all the effective torsional stiffness of the area contained. The ele-
ments A, B, C and D are assumed to be acted upon by concentrated forces at the corners
of the plate in accordance with the results obtained for a rectangular plate subjected to
a pure torque using the Kirchoff conditions. For convenience, these torsional elements
(actually subelements) are all assumed to be identical. It is further postulated that the
bending stiffness of the element is determined by the vertical member or rib acting in

~

—_— 7< Grid coordinate line

F1G. 1. Schematic view showing typical element.
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conjunction with that portion of the plate which lies half a grid space on either side of the
vertical rib. The spacing of the coordinate lines is chosen so that the “effective width
criteria” is not exceeded anywhere in the plate. Thus the beam cross section is determined
to be that of a T-section (flange plus the vertical rib). The bending stiffness is computed
accordingly. It should be noted that the flange width is fixed by the original choice of
coordinate lines.

When the vertical ribs are welded or molded together, the additional stiffness obtained
from the ‘“interaction moment” must be taken into account. The term ‘“‘interaction
moment” refers to that moment generated in the B'B” by an applied moment, M, shown in

Fig. 2 on the beam A'A4".
N AM)
A

8’ 8"

FIG. 2. Interaction moment.

Let us use the grid coordinate system shown in Fig. 3.
It is easy to show that if we consider only beam bending and include the effects of
the transverse moment, we can write

(Mm,n_ VMn,m)/EI = (ym+ 10— 2ym,n + Y- l.m)/h2 = A. (1)

Similarly
(Mn.m_ VMm,n)/EI = (yn+ 1,m~ 2yn,m+yn— l,m)/h2 (2)
where the right hand side of the equation represents the curvature and the left, the moment
per unit length less the Poisson ratio times the interaction moment. The result is the

effective moment producing curvature at the point (n, m). Solving for M,,, and M, ,,,
we find

M,,, = EI/(h*(1—v*)(A+vB) €)
M, = EI/(h*(1—v?)(B+vA) @

where the order of the subscripts on vector or directional quantities such as moment,
slope, shear, etc. indicates direction. Thus the subscript designation (m, n) signifies the
point (m, n) and the first subscript, m, signifies the vector direction. Thus M, , is the moment
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FiG. 3. Coordinate system, vector designation scheme.

located at the point (m, n). The moment is applied in the m direction. If equations (3) and
(4) are differentiated twice with respect to the m and n direction respectively, we find

Mm+ l,n—sz,n+Mm— in = D(Amm+VBmm)
Mn+ l,m_zMn,m+Mn- i,m = D(Bnn+VAnn)'
Summing we obtain,
q = D(Amm + Bnn + v(AI"l + BMM)'

Let us consider the action of the torsional elements depicted as plates which lie interior
to the grid lines and make no contribution to bending strength. They are assumed to behave
as if they are attached only at their corners to the grid coordinate points; i.c. where the
beam elements cross. The reacting load at these points is assumed to be a concentrated
load. This may be justified either from elementary considerations or plate theory using

the Kirchoff conditions. The force exerted by the torsional elements A, B, C, D, may be
written as

%{ —(yn— l,m+yn,m+1 —yn,m—yn— 1,m+ 1)+(yn+l,m+1 +yn,m_'yn,m+l ~Vn+ l,m)

+(yn— 1,m— 1+yn,m_yn,m— 1™ Vn- l,m)—(yn.m— 1 + Vat 1m~ Vnm— Y+ 1,m— 1)}
x8D(1—v?¥)/h* = R

)

where R is the total load exerted by all the torsional elements on the beams at the grid
intersection (m, n). This is not inconsistent with the finite difference representation.

The sum of the load acting at the grid from all elements at the coordinate (m, n) is
given as

g +R = qh*. 6)

The result in the limit is the finite difference representation of the biharmonic equation
governing plate deflection.

Viy = g¢/D. ™



1080 J. MAHIG

Discretely reinforced plates

Although the representation obtained above is for a uniform plate and its behavior
in the limit is encouraging, it does not give additional insight into plate behavior nor aid
in solving more general problems. Further, though the model precisely measures stresses
and deflections where the rib flange ratio is one, it is of more interest to determine it in
the case where the ratio is different from one. In order to find this solution, it is necessary
to eliminate dependence on the finite difference formulation of the Bernoulli beam bending
equation since in that formulation the moment distribution is described by straight line
segments between points at which deflection is measured. This distribution will not permit
variation of the rib flange ratio. In order to achieve the required generality the finite
difference form of the Bernoulli equation is replaced by the equivalent three moment
equation which provides more accurate moment estimates between grid points.

In order to derive an equivalent load deflection relationship using the three moment
equation, assumptions must be made regarding internal stress variations due to the
individual subelement interactions. The only precedent in the literature to guide the de-
cision is the finite difference formulation which assumes the interaction may be represented
as concentrated loads which is a conservative estimate. The distribution assumed here is
shown in Fig. 4 where the interaction loads are considered to be uniformly distributed
over half the grid distance on either side of a grid coordinate point on the beam element.
The interaction loads are the loads generated at the corners of the twisting element and
also the internal load generated between the crossed bending elements. The external loads
dm,. are considered to be acting uniformly from grid point to grid point on the beam
element shown in Fig. 4.

The relationship of the loading is schematically represented in Fig. 5.

Thus we may establish the relationship that

qn,m = am,n + qn,m (8)

where g, ,, is the entire load from the torsional elements acting over four quadrants at
the intersection (n, m). Thus as before the resultant load from the torsional elements may
be expressed as

Rib = G ©)
!
qﬂ-l,m ip,m an-u.le
q"-':"' ! qn,m ;
M»-lm/ . y; /g \Miubl,m
V,,_,’,,, 7/Ln—l,m74#/ Ln,m Vasl,m
\ ’ | ’ ' /
! yn-l,m yn.m
| . h Yok, m
|

FIG. 4. Beam element loading.
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n

Fi1G. 5. Schematic view of interaction loads.

Using the equilibrium equations on the element in Fig. 4, we find that
Mn+ l,m_2Mn,m+Mn— im = —qn+ l,mhz/g_ 3/4qn,mh2 _qn,mhz/z_qn— 1,mh2/2_'qn— l.mh2/8
(10)

The application of the three moment equation to this element results in the following
equation

Mn— l.m+4Mn,m+Mn+ 1m = 6E1/h2(yn+ l,m_2yn.m+yn— 1,m)_h2/4(qn— l,m_qn,m)
—h?/128(50G,m— 7dn— 1.m— Tdn+ 1.m)-

Adding equations (5) and (6) together to eliminate loads with subscripts other than
(n, m) it is found that two equations result from the beams crossing in the n, and m directions
respectively whose centers lie at (m, n). They are

Mn— l,m+46Mn,m +Mn+ 1m = 48EI/h2(yn+ 1m™— 2yn,m+yn— l,m)
+ hz[3qn,m + 15(q,,_ 1,m + qn,m)]-

A similar one may be obtained through subscript interchange except that g, ,, is replaced
with g,, ,. Summing these two equations and using equation (8) then substituting (9), we
finally obtain

Mm_ 1‘n+Mm+ 1,m +46Mm_,| +Mn_ 1,m+M"+ 1'm+46Mn’m = Zl. (13)
We may obtain two more independent relationships which are not dependent on the

internal loads by summing equation (11) and its counterpart in the m direction as shown
below

(1)

(12)

My g1 +4My 1+ My i1 = - =Gy 1.m-1 TH?/128
M,y +4M, M, =, —Gps1.mTh?/128
My 1 M1 v Moy i = oo —Gps 1 me 1 TH?/128 (14)
My 1pi1+8M o 1+ Mpp 0= oo =Gt 1041 7H?/128
My, +4Mpy oAM= ... —am+l,,,7h2/128

Mm—l,n-1+4Mm,n—l+Mm+ 1,01 =+ _6m+ 1,n—17h2/128'
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Premultiplying the second and fifth equation of the set (14) by 50/7 and summing the
entire set of equations will eliminate the internal loads and obtain equation (15) as follows

Mn—l,m—l+4Mn,m-1+Mn+l,m—l +50/7(Mn—l,m+4Mn,m+Mn+1,m)+Mn—1,m+1
+4Mn,m+1+Mn+ 1,m+1+Mm—l,n—l+4Mm,n—1+Mm+ 1,n—-1+50/7(Mm—1,n (15)
+4Mm,n+Mm+1,n)+Mm—l,n+l+4Mm,n+1+Mm+ 1n+1 = Zz

Proceeding in a similar manner using equation (10), we find respectively the following
result

Mn+ 1m+1 _2Mn,m+1+Mn—l,m+1+6(Mn+1,m_2Mn,m+Mn—l,m)+Mn+ 1,m—1
“2My 1AMy g1 My = 2Mp iy Y My H M, (16)
—2Mm.n+Mm—1,n)+Mm+ 1,n—1 _2Mm,n—l +Mm—1,n—1 = Z3.

Equations (13), (15), (16) define the relationship needed to satisfy the requirements of
plate compatibility conditions.

Let us now consider the effect of a concentrated transverse couple on the terms in the
three moment equation. If a concentrated transverse couple M is applied to a section of
a beam, the effect is precisely the same as applying a couplett to the beam at that section
acting along the beam of magnitude vM. The effect of a distribution of these couplets may
be found through an integration of the resulting M/EI diagram which is shown as

l Ln.m
Mn+1,an,m+2Mn,m(Ln—l,m+Ln,m)+Mn-l,m(Ln—l,m) = GV{L f "'Fn,m(Mm,n+l;

n,m v 0

()]
Ln—1,m
X Mm,n; é)é d¢+ I/Ln—l,mJ‘ Fn—l,m(Mm,n+l 5 Mm,n; é)é dé}
0

+6EI(yn— l,m/Ln— l,m+yn+ 1,m/Ln,m)'

Where the function F,, are arbitrary internal distributions of interaction moments
chosen by the analyst to satisfy most nearly reinforcement configurations in a given design.
If the case is considered where the distribution is assumed to vary linearly from grid point
to grid point (as is done in the case of a uniform plate; rib flange ratio, one), F, ,, taken
on the form

Fn,m = (Mm,n_Mm+l,n)/Ln,mc+Mm+1,n' (18)

If the rib width of the reinforcement is less than grid spacing (i.e. rib flange ratio less
than one) and if the interaction moment is considered constant over the thickness of the

t Two equal and opposite couples acting an infinitesimal distance apart.
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web, the function F, ,, takes on the form
M, L,,-b<¢<L,,
F,m=10 b<¢&¢L,,—b
Mo O0<é<b

where. it is assumed the intermediate plate interaction momentt is negligible and the rib
width is 2b everywhere.

In order to consider the case where the interaction variation is linear as shown in Fig. 6,
all that is required is to replace M, ,, as

Mn,m = Mn,m_VMm,n (19)
M M
|
M, [ Ma t
Mc - r—-ﬂl Mc ,/ -
My M, |-
A I c A I c
h h h h

F1G. 6. Assumed variations of interaction moment.

in each application of the three moment equation in the above derivation, for which it is
interesting to note that the same substitution is used to obtain equations (1) and (2). A
very similar relationship may be found for the case where the moment is assumed to vary
in a stairstep pattern shown in Fig. 6(a).

Making the substitution from equation (19) into equations (13), (15), 16) we obtain the
final form of the equations which determine the stress and deflections in a uniform plate
(rib flange ratio one) with a linear variation in the interaction moment from grid point to
grid point.

M, o +Muyy,+46M, M, _, M, +46M, ,—8VM, ,_+4M,
+M, i1+ M, +4M, M, ) = Z1

My 1+ M+ Myt g1+ 50/ T My g+ 4M oy + My )+ My g sy (21)
+AM, 1+ Myt i1 T Moy o1 4+ Moy o1+ 50/ T(M g, +4M,, ,
M1 )t Moy pi 1+ 4y Mt i = VMg ey T M+ My
+50/T (M pps1+4Mppn+ My )+ My ns1 +48Mpi 1 a b Mt 10— 1+ My 1 m s
+M, g+ M, 1 +50/T (M +AM M, )My o AM
M, me1) =22

(20)

1 In the region where b < ¢ < L,,,—b the function F,, must be determined for the interaction of plate
with reinforcement. Estimation of this factor must be left to the individual analyst or the results of a series of
physical tests. For convenience it is here assumed zero.
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Mn+ 1m+1 —2Mn,m+ 1 +Mn—- 1,m+1 +6(Mn+ l,m_ZMn,m+Mn- l,m)+Mn+ 1m-1
—2Mn,m— 1 +Mn—- 1,m—1 +Mm+l,n+ 1 —2Mm,n+ 1 +Mm~ 1,n+1 +6(Mm+ l,n_2Mm,n (22)
+Mm—l,n)+Mm+ 1,n—1 _2Mm,n- 1 +Mm— 1n-1— Z3.

In order to determine the deflections and stresses for a plate discretely reinforced with
ribs of width 2b, where h < 2b, substitution of the result of the integration from equa-
tions (17) and (18) which is given as

vM,, , = 3vb(2M,, (2h—Db))/2h
VM ey = 3Vb2Mm,n+ 1/h
VM, .y = 3vb’M,,,_1/h
into equations (20) and (21) obtains the set of equations governing the stresses and deflec-

tions in an arbitrarily loaded uniform plate, discretely reinforced. The stiffeners of which
are of width 2b and the grid spacing is A.

RESULTS

In order to demonstrate the accuracy obtainable using this method and the effect of
parameter variations the final equations were applied to the case of a uniformly loaded
simply supported square plate. Two parameter variations were considered. In one case
the interaction moment was permitted to vary in a stairstep pattern as shown in Fig. 4(a),
and in the other a linear variation as shown in Fig. 4b). The load distribution pattern was
also varied slightly while the interaction moment was permitted to vary linearly. Figure 7

A
|<._—L—__.|
Condition — piate 4, interaction
moments are controlled to vary linearly
from values established at grid point
a Yenax = 0-00413 qa/D

Mupax=0-0479 qo?

A Condition ~ plate 4, interaction

__>| h f— moments are controlled to vary in stair
step pattern {constant over grid intersection

to half interval points)

8
(IR A— Ymox ™ 0-004075 qa%/D
T N J\ Mmax=0:04825 qa?
a
Condition ~ plate 8,interaction
a moments are controlled to vary linearly
N from value established at grid point
\ l # Ymax = 0:00440 qa%/0
L 2 Mepax= 0-05055 qa?
._.1 A f— f

FiG. 7.
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shows the results obtained in each case. For the reader’s convenience, the finite difference
solution is given as

VYmax = 0:00403ga*/D; M, = 00457qa®
and the exact solution as
Vmax = 0:00406ga*/D; M., = 0-0479ga>.

The error found using stairstep interaction moment variations are less than 1 per cent
for both the deflection and the moment using a 4 x 4 grid.

The grid size used in all calculations shown is 4 x 4. The loading used in each case is
shown by crosshatching—the singly crosshatched area carrying twice the load of the doubly
crosshatched area. The loading it should be noted is precisely as shown.

CONCLUSIONS

The method described above for the construction and analyses of a plate element
from an ensemble of elementary pure twisting and bending elements has been shown to
be capable of providing an accurate means for calculating stresses and deflections in
plates. The extension of this method to handle nonhomogeneous or general boundary
value problems for discretely reinforced plates may be accomplished ina relatively straight-
forward manner from the derivation presented above. The resulting program should be
capable of being easily modified to incorporate design changes as only three entries become
significant. They are the incremental bending and torsional stiffness and the modification
to the interaction moment distribution.

It should be noted that the size of the matrices do become large as the number of
grid points increases because three quantities must be determined at each grid point.
However, the example seems to indicate that a coarser grid may be tolerated without
significant loss in accuracy. This in effect may permit the generality of the approach to be
conserved with no increase in the amount of computer storage necessary over finite
element methods for a given precision in the results.
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APPENDIX
The quantities Z1, Z2, Z3 are defined as follows:
Z' = 48EIWYps 1+ Ymt 10— Ymnt Voo tm+ Ym- 1.0+ 320 Gnm+ 2o 1.m
+qmant Gm— 1,0 F DL =V h(Yn {1 = 2Vnm+ 1T Vnt 1m+ 1~ 20+ 1m— 2Vnm
+Vn-1mFt Vnt tm-1—2Ynm—1F Yu-1,m—1);

22 = REIRY,_ 1 m-1+18/Tnm—1+ Vot 1.m- 1)+ 28EL/(TR*) {yy - 1 m— 50V m
+ Yot tm} + 12EHR Y, { s 1 418/ TV s 1+ Vs 1.m 1] — B2 /M50 TG~ 1,m+ G m)
i m+1Fdnmt 1 dn—t,m— 1+ nm—1+50/14m— 1,0+ 50/ Tqmn+ Gm— 1,041
+Gmat 1 Gm- 1.0~ 1+ Amn— 1)+ 2D =V)/A{T/128y, 5 12+ 9/32Vn— 1, m+2
—43/64Ynm+2+9/32Vp4 1m+ 2+ T/128Yps 2 m+2+9/32¥n—2m+ 1 +81/56Y, - 1 ms 1
—183/56m+1+81/56Yn+ 1,m+1+9/32Vn s 2,m+1—43/64Y,— 2. m— 183/56Y,_ 1 m
—1849/224y, ., —183/56Y,+ 1 m—43/64Y 04 2.m+9/32Vp— 2 m—1+81/56y,_ 1 m—1
— 183/56Y, m-1+81/56Y, s 1 m—14+9/32Vns2m—1+7/128Y_2m—2
+9/32Y0— 1m-2—43/64Y0m—2+9/32Vn 1 1m-2+7/128V01 3. m— 2},

Z3 = —1/2{gum+1+9n-1m+1+6dnm+ 6y 1 m+dnm-1FGn—1,m-1F Gmn+1
+m— 1041+ 6mn+ 6m— 10t G 1+ G 10— 1} — DA—=VWH [+ 1/4(y, - 2m2
+4Yu 1 mi2= 10V ms 2t Vs tms 2t Yot 2m+ 2) F Wno2me 1 +4Vn-1ms 1
—10Y,m+ 1+ s 1ms 1T Ynt 2m+ 1) =5/ 20n+ 2m+ 40— 1m- 1= 10¥nm1
+ s 1mt Vnt2,mt OUn-2m—1F4Vn-1m—1—10Vnm-1+ 4Vt t,m-1F Vus2,m—1)
+1/40n-2,m-2+4Vn-1m-2— 10V m—2+4Vn+ t,m-2F Vs 2,m-2)]

(Received 20 May 1970; revised 23 September 1970)
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AGcrpakT-—PaboTa npequpMHHMaerca NPEACTaBUTR HOBHIH MeETOJ aHAIM3a 3ajay, KacaloIAxs
HEOAHOPOAHKIX, YCHICHHRX IUCKpeTHO ImacTmHok. PabGora yxaseiBaer, 4Wro omHOpozmas IUIACTHHKA
MOXCT GBITh TOUHO 06061UEeHa C HOMOIIBIO KOHCTPYKIMH, CIIOMEHHOM TOJIHOCTBIO M3 MPOCTHIX Ganox |
NIEMEHTOB NOABEPAEHHLIX Kpydenmio. Ilonblysch ammpoxcumamue#ft BTOpOTO MOPAAKA VIS PEILICHUN
YPaBHEHMIl, OIMCHIBAIOIINX NMOBEACHHS H3THOaeMBIX 31€EMEHTOB, OKA3bIBAETCS BO3MOXHBIM OHPEHETHTH
pacupeNencHHe HEKOTOPhIX BHYTPEHHBIX Hampskenull. Biarogaps 3TOMy MeTOAy MOXHO ONPEICIHTS,
HE3aBHCHMO, JKECTKOCTH M3rH0a M KPYYeHHS, a Takke pacupeie/ieHne B3aMMOIOeHCTBYIOIMIEr0o MOMEHTA.
Ilpennaraemas Moxens yka3hBaeT, 9TO B IIPENENLHOM NEPEXoae OHA CTpeMATcA K auddepeHumanrsHoMy
ONpPeNeNsIoNEMy YPAaBHEHHIO OMHOPOAHOM IUIACTHHKH. BhIBoASTCA ypaBHeHUs A/f JHCKPETHO YCHIIEHHOR
ONHOPOMHOH IUIACTHHKH. OTH YPaBHCHHA NPUMEHAIOTCA K PAcieTy paBHOMEPHO Harpyxenmoli cBoGogHO
onepToli miIACTHHKH. TOYHOCTL pe3yNbTaTOB AJIA PEIUETKH OKAa3HIBAETCH BHICIIAA IO CPaBHEHHIO C
PE3YJIBTATOM IOJIy4CHHBIM METOAOM KOHEYHBIX Pa3HOCTeH s 3aJaHHOTO PaclpeleneHHs BHYTPEHHBIX
HANPAXEHUH .



